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Abstract. Some beautiful classical results in the mathematics of Abelian integrals, algebraic
functions and compact Riemann surfaces, which are relatively little used in physics applications
(except in string theory), are shown to be relevant in the semiclassical theory of non-adiabatic
collisions. These results are discussed in the context of the adiabatic theorem for the time-
dependent Schdinger equation describing multi-(electronic) level molecular collision systems.

It is found that the different potential energy surfaces governing nuclear motion can be regarded
as a single algebraic functiar(z) of the complex time variable. The topological and analytic
properties of the compact Riemanrsurface for this algebraic function then determine the
nature of the non-adiabatic quantum transitions. The amplitudes of these transitions are given
by a generalization of Dykhne’s formula, whose main feature is an Abelian (action) integral of
the Abelian differentiak(s) d. These ideas are applied to a rederivation of the Landau—Zener
formula, which is shown to result from a model with a genus zero Riemann surface. A genus one
model, illustrating more substantially the interplay between topology, analyticity and quantum
transitions, is also discussed in detail.

1. Introduction

The semiclassical theory of collisional dynamics has a long and interesting history, reaching
back to the early days of quantum mechanics [1]. During its initial phase it was regarded
mainly as an approximation scheme to quantum mechanics, albeit a scheme with great
intuitive appeal (that of classical mechanics) and practical applicability. The situation
changed somewhat when it was realized, over two decades ago, that this theory can
be cast in the language of Feynman path integrals [2, 3], and that classical trajectories
can be continued analytically into either the complex time or coordinate domain to yield
guantum mechanical results [4]. From then on, semiclassical methodology acquired a more
independent status and was developed more as a theoretical framework in its own right,
while its applications in diverse fields of physics continued to grow [5]. More recently two
important developments in theoretical physics have brought semiclassical theories very much
to the fore. The first is the intense interest in the relationship between classical and quantum
chaos in various dynamical systems and, more generally, in a deeper understanding of the
relationship between classical and quantum mechanics [6]. The second is Berry’s discovery
[7, 8] of the universal presence of non-dynamical (geometrical) phases in the evolution of
systems separable into ‘fast’ and ‘slow’ degrees of freedom, traditionally the prime focus
of study by semiclassical techniques. These developments have not only yielded deep and
unifying ideas in physics [6, 8] but also revealed the great utility of a host of mathematical
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techniques. In particular topological and geometrical methods have assumed great relevance
in many problems of collisional dynamics [8, 9].

In this work we examine afresh the problem of non-perturbative solutions to the time-
dependent Scbdinger equation describing non-adiabatic transitions in a multi-level system.
We hope to demonstrate that certain well established, beautiful, but relatively little used,
results in classical function theory and algebraic geometry provide a remarkably natural and
appealing framework for the description of the physics of non-adiabatic transitions. In our
opinion, this framework also promises to yield calculational advantages as well as deeper
insights into the nature of semiclassical mechanics.

Our problem traces back to the well known Landau—Zener formula for non-adiabatic
transitions [10, 11]. Landau first exploited, within the framework oftwv&s approximation,
the technique of calculating the classical action to yield a quantum mechanical transition
amplitude by complexification of the nuclear coordinate variable. Dykhne [12] later
generalized this method to obtain a non-perturbative solution to the time-dependent
Schibdinger equation in the form of an energy contour integral over time treated as a
complex variable. Pechukas [2], Miller [3,4] and Miller and George [4] then succeeded
in formulating semiclassical dynamics (classical mechanics plus quantum superposition)
in terms of Feynman path integrals and studied extensively the technique of time or
coordinate complexification. Hwang and Pechukas [13] also attempted to justify the Miller—
George theory by proving the existence of adiabatic contours in the complex time plane
corresponding to non-adiabatic transitions along the real time axis. The significance of the
Landau—Zener and Dykhne formulae and the Hwang—Pechukas adiabatic theorem beyond
their immediate applicability was recently underscored by Moetlal [14] in the context
of geometric phases in the complex time plane.

Although this large body of work was aimed chiefly at producing concrete and
computationally useful results, it opens up many exciting avenues of exploration in the
underlying mathematics. We will focus on the following situation. L#f(R;r) be
the electronic Hamiltonian in a molecular collision problem parametrized by the nuclear
coordinatesRy, ..., R, (R andr denote, collectively, the nuclear and electronic coordinates,
respectively). We assume that there exists a fintdimensional subspace of the Hilbert
space of electronic states that is invariant with respeéf joR; r). The adiabatic potential
energy surfaces for nuclear motion(R), satisfying the Sclidinger equation

Hel(R; r)¢n(R; }’) = En(R)(pn(R; r)
can then be obtained by solving a polynomial equatiorejinf the form
eV +ar(R)e" T+ +ay(R)=0

in which ¢; (R) are functions of the matrix elements &£, in an arbitrary representation.

This polynomial equation defines a complex analytic varigtyn C"*+1. If we further
assume the existence of classical trajectories for nuclear motion, then each of the nuclear
coordinatesk; becomes a function of the time variableThese functions, when analytically
continued, can be regarded as single-valued meromorphic functions of the complex-valued
time variable. The time variable serves to parametrize a curvé defined by

e +ar)e" T+ Fay() =0

whereq; (1) = «;(R(t)). In the case of only one nuclear coordingte = 1) the nuclear
trajectory R(¢) ande(¢) (defined by the above equation) actually furnish a uniformization
of V. In the more general case: > 1), we can still use the functioa(r) = e(«; (R;(1)))

to impose a complex structure on the curve parametrizedr,bgnd thus obtain the
corresponding Riemann surface f). The main question is then the following. When
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classical mechanics is analytically continued in the above sense, how do the topological
and complex structures of the resulting Riemann surface affect the dynamics of a system
described semiclassically by the S@tinger equation? We will approach this problem
from the viewpoint of a physicist, and address this work mainly to physicists who, like
the author, may not be entirely at home with the theory of Riemann surfaces and algebraic
curves. Our discussion on the relevant mathematics will thus be quite elementary and largely
non-technical.

We begin by showing how the different branches of an algebraic function may
correspond precisely to the different potential energy curves in a multi-level problem. Next
we relate the analytic properties of this function to the genus of its Riemann surface by
the Riemann—Hurwitz formula [15] (section 2). A generalization of Dykhne's formula is
then proposed with the help of the Hwang—Pechukas adiabatic theorem in the complex
plane (section 3). In section 4 we demonstrate the power and elegance of the Riemann
surface approach by providing yet another derivation of the Landau—Zener formula—an
entirely function theoretic one that highlights the crucial roles played by topology and
analyticity. We will see that the model on which this formula is based leads to a genus
zero Riemann surface—topologically a 2-sphere, with trivial fundamental group (all closed
loops deformable to a point). This topological feature is the deciding factor contributing to
the simplicity of the formula (equation (27)). Section 5 pursues a simple model leading to a
genus one Riemann surface—topologically a 2-torus. This slight complication in topology,
together with a corresponding complication in the analytic properties of the Abelian action
differential, lead to an interesting but much more complicated counterpart of the Landau—
Zener formula, involving the fundamental periods of elliptic functions. Our discussion of
the genus one model also makes contact with the Riemann—Roch theorem [16], a powerful,
classical theorem relating the analytic properties of meromorphic functions and Abelian
differentials on a Riemann surface to the topology of the surface. Finally, section 6 is
devoted to some speculations on the directions for further study.

2. Quantum transitions as manifestations of topology and analyticity
We assume that the time-dependent 8dimger equation
oV
HOWY (1) = |h§ (1)

describes the time evolution of non-degenerate electronic states in a molecular collision
system. The HamiltoniarH (¢) depends on time implicitly through a choice of nuclear
trajectoriesR(¢). The instantaneous eigenfunctiop&) of H(¢) satisfying

H(t)pn (1) = £ (t)u (1) 2

are assumed to form a complete orthonormal set, whgie, for real r, is the potential
energy curve governing nuclear motion on tik electronic level in the adiabatic (diagonal)
representation. Non-degeneracy means tha) # ¢;(¢) for all realr, andi # j. For
molecular collision problems, one usually works with a finite-dimensional subspace of the
Hilbert space generated Hy,} that is invariant unde#. For anN-level problem, and

in an arbitrary representatida,(r)}, the N x N hermitian matrix representingf (r) is not
necessarily diagonal, and tlag(s) are obtained from diagonalization, i.e. solutions of the
characteristic equation

det|H;;(r) —¢| =0 3
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where
H;;(t) = (6:|H16;).
Equation (3) is in general a polynomial equation of the form
eV +ar()e" T 4 ay(t) =0 (4)

where the coefficients; (r) are functions offf;; (). This equation defines an affine analytic
curve inC?2.

For fixed realtr, non-degeneracy and the fundamental theorem of algebra imply that
there areN distinct real roots—the eigenvaluegr), i = 1,2,..., N. However, and this
is the crucial point, there always exist complex valuesr dbér which equation (4) has
repeated roots. These complexalues are the branch points of the multivalued function
£(t) determined by equation (4}.(¢) can be made single valued by considering its domain
as anN-sheeted Riemann surfadé (instead of the complex plan€) whose sheets are
joined together at the branch points and along cuts. The details of how these cuts are made
do not affect the topology of the surface. What is important for our physical application
is that the topology dictates the possible non-homotopic smooth pathd ¢tihose not
continuously deformable into each other) along which) varies from eigenvalue off
to another. Distinct, non-intersecting, potential energy cueyé9 considered asv real
functions of reak, in fact, when analytically continued, constitute a single potential energy
meromorphic functiore(r) : M — CU{oc}, where M is a Riemann surface, i.e. a one-
dimensional connected complex manifold.

Thus the dynamics of a multi-level system can conveniently be viewed as dynamics
on a Riemann surface whose topological and complex structures determine the nature of
guantum transitions. We will see (in the examples discussed in sections 4 and 5) that such
topological properties as the genus, the fundamental gfou@/) and the first homology
group Hy(M), as well as such analytical properties as the degres(rf(the number of
branches), and the singularities and residues of the Abelian differettjalz, all play very
important roles.

It is a remarkable theorem [17] in classical function theory that if the coefficie(ts
in equation (4) are rational functions of then the Riemann surface eft) is compact
(homeomorphic to a sphere withhandlesg =0, 1, 2, ... being the genus of the surface).
Under the conditions of this theorem, equation (4) defines an algebraic curve [16] and the
meromorphic functiore(z) is an example of an algebraic function [17]. The converse of
this theorem is also true: any compact Riemann surface is conformally equivalent to the
Riemann surface of some algebraic function. The simple topology of compact Riemann
surfaces allows a relatively straightforward identification of the paths leading to quantum
transitions based ofl1(M) = Z? for a surface of genug, as well as relatively simple
calculations of the corresponding action integrals based/gid/). This will be discussed
further in the next section and demonstrated in some detail for the genus one example in
section 5.

The genusg of the Riemann surface of the algebraic functiet) can be easily
determined by another remarkable theorem for compact Riemann surfaces—the Riemann—
Hurwitz formula [17]—which relateg to the number of branch point8), and the degree
(N), of e(¢). Specifically

g=B/2—N+1 ©)

This formula immediately implies that the number of branch points must be even. Its simple
and straightforward utility will again be illustrated in the examples in sections 4 and 5.
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Of course there is na priori reason why the coefficients () in equation (4) should
be rational functions of and, in fact, in many semiclassical model studies [1], they are not.
Rational functions, however, can in practice be used to approximate any smooth function
locally to any desired degree of accuracy. As will be seen below, the Landau—Zener model
is based on approximating potential curves locally (near the crossing point) by the simplest
possible non-trivial rational functions of (linear functions). The success and importance
of this model has motivated us to exploit the convenient properties of compact Riemann
surfaces in our investigation. Thus, in this work, we will confine our attention to models
of the HamiltonianH (¢) leading to such surfaces.

3. The adiabatic theorem and Abelian integrals in the transition amplitude

The adiabatic theorem on the real tin® axis states that for a non-degenerate, slowly
varying, time-dependent Hamiltoniat(r) the solution¥ () of the Schoddinger equation (1)
with ¥ (0) = ¢,,(0) (cf equation (2)) is

W() = ¢u(r) exp{iyna) - ;I:, /0 £n(t) dt} 6)

in the semiclassical limik — 0. The quantity

Yat) =i /0 (¢nln) dt )

is the so-called geometric (Berry) phase, which can be shown quite generally to be real
provided{¢,(¢)} is an orthonormal set for ail

The condition of adiabaticity (slow time variation &f(z)) amounts to the limif” — oo,
where T is the time interval over whictH (r) changes significantly. As pointed out by
Hwang and Pechukas [13], there is a close connection between the adiabatic limit and the
classical limith — 0. The correspondence between these two limits is usually achieved by
the time-scalingr = ¢/ T, which leads to the time-scaled Sodmger equation

ow’
aT

whereh" =h/T, H'(t) = H(Tt), and¥’(t) = ¥(T1). However, Berry [18] also pointed
out that the two limits are not in general equivalent, sidt&zr) in the above equation
may have a concealdgdependence. Thus the classical limait> 0 (on both sides of the
Schibdinger equation) an@ = constant may not be equivalent to the lifit— oo while
keepingh constant.

To restore the equivalence, we make a distinction between the classicaldimit @
on both sides of the Sabdinger equation (1)) and the semiclassical limit-§¢ 0 on only
the right-hand side of equation (1)). This distinction is justified in the present context since
H(t) is presumably determined from a quantum mechanical treatment of the electronic
motion, whereh # 0 strictly. In the semiclassical limit the parametersh, ¢ in our
model Hamiltonians (equations (18) and (28)) are strictly constants (even though they
may involveZ in principle), and are not affected by the linfit— 0. The equivalence
between the adiabatic and the semiclassical limits is borne out by the Landau—Zener formula
(equation (27)), in whicte o« 1/T andb = constant.

Hwang and Pechukas [13] also generalized the adiabatic theorem from the real axis to
the complex plan€ to incorporate quantum transitions from state statej. This result
can be restated in terms of theRiemann surface: if the energy functiei) is viewed
as a function on the Riemann surfakg ¢(¢) : M — C U {oo}, specified by equation (4),

in =H (t)¥V' (1)
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Figure 1. A contourC, from the pointr = 0 on the real axis of théth Riemann sheet (Dto
the point = 0 on the real axis of th¢th Riemann sheet (Dalong which the adiabatic theorem
holds. The contour leads to a quantum transition from statestate;j. In the general case
sheets and j may not be connected directly.

then there exists a contodr on M leading from theith sheet to thejth sheet such that
equation (6) holds along in the semiclassical limit — 0. Figure 1 illustrates one such
contourC,. (u is a homology index, as explained below.) The adiabatic theorem thus
implies that, alongC, the solution to the Schdinger equation (1) describing a system
initially in statei is given by

We(r) = ¢e(r) exp{iyc(t) - IL_/O(C)EU) dt} 8

whereg¢(¢) is the analytic continuation af; () from the real time axis (on thgh sheet of
M) to other regions off alongC. The geometric phasg:(¢) in equation (8) is given by

ye(r) =i f dt (e (1) e (1)) ©)
0;(C)
Now the general solution of the Sc¢hlinger equation (1) on the real time axis is
N H t
W) = ; Cr()¢i (1) exp{ - ;I,: /0 ei(t) dr}. (10)
Equation (8) thus satisfies the boundary conditions
We(—00;) = Ci(—00)ep; (—00) exp{ - ]i:f*“ &i (1) dt} (11)
0
and
We(00j) = Cj(00)eh;(00) exp{ — %/0 0] dt} (12)

where in the above two equations all time values are real and
Ci(—00)? = 1. (13)

The boundary condition equation (11) is equivalent to the following boundary condition on
the geometric phase:

expliye(—o0;)) = Ci(—o0) = & (0 real). (14)
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Comparing equation (8) with equation (12), we have
oo

exp[iyc(oo,-)}exp{ - I:/ I s(t)dt} = C,-(oo,)exp{ - l_/ J e(t) dt}. (15)
' h Jo.o ‘ h Jo,

Thus for a patit from 0; to 0; on which the adiabatic theorem holds, the transition amplitude
from statei to statej is given by

Cj(o0)) = exp{iyc(ooj)}exp{ — }l_lfce(t) dt}. (16)

The adiabatic theorem also necessarily implies that the @d@h— 0;) is one where the
Abelian integral

/s(r) dr
C

has a negative imaginary part, to insure thatias- 0 the transition probability does not
increase exponentially. This requirement applies only to the entire path and not necessarily
to a localized segment. Indeed, any vaficcan be written as

C=C+AC—-AC

where AC is a localized segment on which the above Abelian integral has a positive
imaginary part.

In general there may be several non-homotopic p&ths M from O, to 0; satisfying
the adiabatic theorem, whefeis a homotopy index. Considenr # A, such thatC,, and
C;, correspond to the same path) (andC;, may consist of non-commuting loops traversed
in different orders). One still has

/8(t)dt=/ e(t)de
C C,

r1 A2

/ e(®)dr=0.
GGy

Now f(Cy) = fc/x e(t) dt considered as a map:I1;(M) — C is a group homomorphism
provided two paths’;;, and Ci, (k1 # k2) within the same homotopy class do not enclose
singularities with non-zero residues of the Abelian differential) dz. In this case, the
fact thatC is Abelian implies thatf is more appropriately considered as an injective map
from Hy(M) to C, since, by a well known theorenif; (M), the first homology group of
M, is the Abelianization ofl1;(M), i.e. Hi(M) = T13(M) /[Ty, [11], where [[14, I14] is
the commutator subgroup di;(M). Thus we need to label the paths leading to distinct
values of the Abelian integraf «(s) dr by C,,, wherepn is a homology index, rather than a
homotopy index.

Finally, to take into account the possible existence of singularitiegzf: with non-
zero residues, we recognize that, within each homology ¢lasisere may be distinct paths
Cuk, @ndCpy, (k1 # ko) such that

/ a(t)dt;é/ e(t)dt
C Cuky

if the IoopCMlel:kl2 encloses such singularities. The total transition amplitude is thus given
by

or

ky

Cj(o0)) = Zexp{im(ooj)} ZeXp{ — ;1:/6
" k

nk

e(t)dt } a7)
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where the sum oveux is over the homology classes and that ovés over the paths in each
homology class leading to distinct values, with negative imaginary parts, for the Abelian
integral [ &(r) dr. We see that sincgg, (o0;) is real for all i, the geometric phase factor

expliyc, (00;)}

gives aU (1) representation off1(M). Equation (17) displays clearly the importance of the
topology of M and the analytic properties of the Abelian integfal(z) dr in the calculation

of semiclassical transition amplitudes [19]. This equation for the transition amplitude is the
generalization of Dykhne’s formula that we seek. It will be the basis for our calculations

in the next two sections. We note in advance that these calculations are based on examples
with ¢ < 1. The corresponding@l;(M)’s are Abelian and thu$li (M) = H1(M) for these

cases.

4. The Landau—Zener formula revisited: dynamics on a genus zero Riemann surface

The simplest model describing non-adiabatic transitions is the Landau—Zener model for a
two-state problem. In this model the electronic Hamiltonfarr) is given by

at b
H() = < b _at> (18)
wherea and b are positive real constants. Physically the diagonal elements represent two
intersecting potential curves. Thus the quantitgan be interpreted as the product of some
instantaneous velocity of nuclear motion and the slope of one of the curves at the crossing
point, while b is the non-adiabatic coupling. The solutions of equation (3) or (4) for the
adiabatic potential energy surfaces are immediately given by

s(t)zq:a\/<t+iz> <t—iz>. (29)

The algebraic functior(r) thus has two branch points (at= +ib/a) and two branches.
SettingB = 2 and N = 2 in equation (5) (the Riemann—Hurwitz formula), the Riemann
surfaceM of «(¢) is seen to be of genus zerg & 0), or topologically a 2-sphere. This
fact can also be seen very simply by the topological illustrations of figure 2, which shows
one way of constructing/ from two distinct (cut) sheets of. (Other ways result from
alternate ways of cutting theplane beginning and ending at the branch poihis/a. All
lead to a 2-sphere fa¥!.)

The Abelian differentiale(z) dr, with £(t) given by equation (19), clearly has
singularities only at the two distinct points at infinity: = oco1, 0o, (see figure 2). The
subscripts 1 and 2 refer to the Riemann sheets corresponding te #mel + branches in
equation (19), respectively. To determine the nature of these singularities, we=lai/¢
and expand aroung = 0. Thus, lettingt;g = ib/a, we have

e()dr = F 5 A+ 150) Y21 — 150042l
<

a at3l
=+ -B-+...)dz. 20
<z3 2z + > ¢ (20)
Henceoo, , are third-order poles of(¢) dr with non-zero residues given by
t2 b?
Y _ 47 (21)

Regooy) =+ 2
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(@
: .
g
© O 2 0,
-tB
p
@ 0, 0,
-tB

Figure 2. The construction of the Riemann surfate (a 2-sphere) ot (r) (equation (19)) for

the Landau—Zener model. One proceeds fr@j distinct sheets of cu€C planes (1 and 2)

with the branch points and cuts as showp & ib/a), through 1-point compactifications to

(b) the corresponding Riemann spheres with cuts, through homeomorphic deformations of the
cut-spheres tod) the corresponding hemispheres, and finally, by joining the hemispheres with
matching boundaries, tal) the 2-sphere. Ina) sheets 1, 2 correspond to theand + signs

in equation (19), respectively.

We note that equation (21) confirms the residue theorem: the sum of the residues of an
Abelian differential on a compact Riemann surface is always zero [15].

The fundamental groupl;(M) for a 2-spheref Hi(M)] is trivial (consisting only
of the identity element). Hence in equation (17) for the transition amplitude there is no
summation over (the homotopy classes 8f) and the geometric phase factor ¢xp, (c0)}
(being al (1) representation ofl;(M)) can be set equal to unity. For the transition>12,
equation (17) then reads

Co(007) = Zexp{ — ;l: / &(t) dt} (22)
k Ck

where(y, is a path onM from 0, to O, (cf figures 1 and 2), and the sum owveris over
paths leading to distinct values (with negative imaginary parts) for the Abelian integral
[ e@) de. (Distinct values arise because of the presence of singularitiegspélr with
non-zero residues.)
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()

Figure 3. Direct paths leading to distinct values for the Abelian integral in equation (22) for the
Landau-Zener model, whose Riemann surface is a sphayeshpws the paths on the sphere;

(b) shows these paths on the corresponding Riemann sheets, deformed to run entirely along the
imaginary axes.

There are two direct paths aif, designated 1 and 2 in figure&( that give rise to
distinct values of/ e(¢) dz. These can also be represented on the Riemann sheets) of
(cut planes) as in figure B, in which the contours run entirely along the imaginary axes
of the sheets. Since both branchess@f) are real on the real axis (cf equation (19)), the
reflection principle onC implies

/@8(l)dt = (/@s(t) dt)*. (23)

Furthermore, we can also conclude from equation (19) that jﬁ@b(r) dr and f@e(t) dr
are purely imaginary. Thus on settirf@s(r) dr =il, I real, the residue theorem implies
that (figure 34))

2
/ e(r)dt —/ e(t)dt = —2il = 2niReq001) = (27i) (b) . (24)
@ @ 2a

According to equation (22), we have to sum over all pathsuch that eac[fck e(t) dr has
a negative imaginary part. Figuread(and the value of Réso;) given by equation (21)
show that, for a positive integér, C; is of the form

Cx = @+ k clockwise loops aroundo;. (25)

(The anticlockwise loops yield positive imaginary parts for the integral.)
The transition amplitude can finally be written as

_ h?\ & mkb?\  exp(—mb?/2ah)
Caloo) = eXp(_zaﬁ> ;exp(— ah ) = 1-exp—mbzjay’ %0
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The leading term of the transition probability is thus

wb?
P, >~ exp <_a}7> (27)

which is the Landau—Zener formula.

We note thatC,(c0) in equation (26) can only be interpreted as a transition amplitude
if it is less than one, which is the case only wheb?/2ah is larger than~ 0.5 ash — O.
The Landau-Zener formula (equation (27)), however, suffers from no such limitation.

5. Dynamics on a genus one Riemann surface
We now consider the following Hamiltonian

H(t) = (“; bj;) (28)

wherea, b, c are positive real constants anti# ab. The solutions of equation (4) for the
adiabatic potential energy surfaces are given by

1 b
e(r) = (Zat + [> F %\/(t + V)t — V)t + /Bt —V/B) (29)

where

b — 2c? 2
« = 761 ¢ + j\/ CZ —ab. (30)
B a? a?
The algebraic functiore(z) of equation (29) has two branches, and four branch points:
+./a and+.,/B. The Riemann—Hurwitz formula then implies that= 1 (on settingB = 4
andN = 2 in equation (5)) and thus the Riemann surfA®f ¢(¢) is topologically a torus.
As in the previous section we use the branch indices 1 and 2 to designate the branches of
£(t) corresponding to the- and+ signs of equation (29), respectively.
The Abelian differentiak(¢) dr is seen to have poles at @nd co1», and zeros at 0
and the branch points./a and=+./B. To find the orders of these zeros and poles and the
associated residues we Laurent expatrd dr aroundr = 0:
1 N 1 1
e®)dt = | —(bFayaB) + ar 1+ Lﬁ S+ )i4+00d | de (31)
2t 2 2 \a B
and around = oo (equivalently around = 0, for z = 1/1):

b_ a(‘”ﬁ)} % =2 %(a ~ Bz + O(f)} dz (32)

2 4

where in both equations (31) and (32) the lower (upper) sign corresponds to branch 1 (2).
From the above equations we see thatsinot a pole but a simple zero, since equation (30)
impliesb = a+/aB, whereas @ and oo, are both simple poles with residues given by

a 1
e(®)dr = |:—2(1:|:1)Z3 + {—

1
Res0) = (b + a\/ocﬂ) —b (33)
Reg00;) = _g _ G7Va4+ﬂ (34)
while oo, is a third-order pole with residue given by
Regooy) = _b + aivoz—i—ﬂ' (35)

2 4
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(@ c*<ab t-plane

Figure 4. The construction of the Riemann surfakeof ¢(¢) (equation (29)) from cut-planes
for (@) ¢? < ab and p) c? > ab. Both cases lead to a torus topologically.

We again note that the sum of the residues vanishes, in agreement with the residue theorem
on compact Riemann surfaces. The branch paintgx and+./8 are all simple zeros of
e(t)dt. This is due to the fact that, besideg ©(¢+) does not have any zeros, while, s

a meromorphic differential o, has simple zeros at./a and+./B.

We also note that(z) dr satisfies the Poincare—Hopf index formula for meromorphic
differentials on a compact Riemann surface, which states that the number of zeros (counting
multiplicities) minus the number of poles (counting multiplicities) of any meromorphic
differential on a compact Riemann surface of gepus equal to 2 — 2. In the present case
g = 1, so the number of zeros efr) dr must be equal to the number of polesegf) dr,
being five in each case, counting multiplicities.

Figure 4 illustrates the construction of the Riemann surfatefor ¢(¢) from the
compactified cut Riemann sheets. The location of the branch pgigis and +./8 with
respect to the real and imaginamaxes depends on the sign of the quantfty- ab, which
by assumption is non-zero (cf equation (30)). A torus results for both cases.

The topology of the Riemann surfadé is closely related to the analytic properties of
meromorphic functions and Abelian differentials that can existMbn The relationship is
embodied in the Riemann—Roch theorem, which, when applied to the Abelian differential
o = e(t)dr (with ¢(¢) specified by equation (29)), implies that belongs to a five-
dimensional linear vector space of Abelian differentials Mnwith poles of orders not
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) ¢ >ab t-plane

a =

o

)

Figure 4. (Continued)

greater than those @ at the same points

Sincelly (M) = Hy(M) = 7?2 for a torus, the homology (homotopy) class ingexn
equation (17) labels two integense Z andm € Z. We will pick specific oriented closed
curves¢ andn belonging to the classead4, 0) and (0, 1) which do not traverse any of the
singularities ofe(r) dt, as in figure 5. Then an arbitrary cur¢g from r; to =, (wheret;
is some reak-value on the first sheet af(r) and t» the corresponding real value on the
second sheet) is homotopic g + (n loops of¢) + (m loops ofn), where Iy is a direct
path fromz; to 7, not traversing any singularities efr) dr. We write

Cy ~ Iog"n™. (36)

Note thatr; # 0 andt, # 0 are chosen as the end pointsCpfdue to the fact thatQis a
pole of w. This choice has no effect on the transition amplitude given by equation (17).

1 This result is obtained by considering the divisor
D = —0y — 001 — 3002

in the Riemann—-Roch theorem, wherg, @01, and oo, are poles of orders 1, 1, and 3, respectively, of the
Abelian differentiale (¢) dr (ed(¢) given by equation (29)). The Riemann—Roch theorem, a deep result relating the
topological and analytical properties of compact Riemann surfaces, is discussed in any standard work on Riemann
surfaces, algebraic curves, and algebraic geometry, such as [15, 16, 19].
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Figure 5. Non-trivial oriented homotopy paths and  on the Riemann surface af(r)
(equation (29)). A general path fromy to t» leading to quantum transition is homotopic
to Ip¢"n™, wheren, m € Z.

Based on a general theorem of Abelian integrals on a Riemann surface, the transition
amplitudeC,(c0) given by equation (17) can then be written in the form [20]

Cr(0) = Z' expli(ny, +m7/,7)}exp|:— }I_l{/] s(t)dt—i-n/e(t) dr
o ¢

n,m,

k1,k2,k3
+m / e(t) dt + 2mri(k1 Reg0p) + kp Regoo1) + k3 Regooy)) ” (37)
n

In this equatiom, m, k1, k2, k3 all € Z, the three residues are given by equations (33)—(35),
v andy, are the geometric phases corresponding to the closed tpapsn, respectively
(cf equations (9) and (17)) and the prime above the summation sign denotes a restricted
sum: only those values of, m, ki, k», k3 are allowed such that the quantity within the
brackets{} has a negative imaginary part. We note thadndn are specific closed loops
on M, not homotopy classes.

For the remainder of this section we will study the relationships between the three
integrals occurring in equation (37).

First we display in figue 6 a possible choice for the patfion the cut Riemann spheres
corresponding to the two sheetsatf) for both the case&® < ab andc? > ab (cf figure 4).
In each casé| represents the complex-conjugated pattigflt is clear we can choose the
loop n (of figure 5) such that it is the combination &f and —1I;. Also, sinces(t) is real
on the real axis, the reflection principle implies that

/ e()dr = (/ 8(t)dt) . (38)
Iy I

/e(t) dr :[ &) dt—/ e(r)dt :2i|m/ e(r) dr. (39)
n Io I Io

0

Thus

To reIatefz e(®)dr to fn ¢(¢) dr we use the following Riemann bilinear relation on two
closed differential® andé on a compact Riemann surfasé of genusgf:

/aMfézg[/ge)/mé—/me/Qé] (40)

whered = df, aM is the boundary of a gsided polygon representing the canonically
dissected Riemann surface with oriented siges;, ¢, %, n,* which generatdl;(M). For

1 See, for example, section I11.3 of [15].
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(@) c2<ab

) ¢t >ab

Figure 6. A choice of the path in equation (37) and figure 5 for the two case$ (%2 < ab
and p) ¢2 > ab, displayed on cut Riemann spheres) (epresents both cases)(and p) on
the Riemann surfac#f (a torus).r andt* (complex conjugate of) represent distinct points on
the cut-edges and thus distinct points &@n 1 is the complex conjugate db.

the present casg = 1, so this polygon is simply a rectangle with opposite sides identified.
We choose& to be the holomorphic differential

6 =df = o (41)

J = va) (t + va) (t = VB) (c + VB)

wherea and g are given by equation (30) arfdto be the Abelian action differential

6 = e(t) dr. (42)

/ fe(r)dt = Q; /a(t) dr — Qn/s(t) or (43)
oM n ¢
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where
2= [ o (44)
¢ (e = @) (t + ) (1 = VB) (t + VB)
and
dr (45)

EﬁW—ﬁW+ﬁw—ﬁW+ﬁ)

are recognized to be the two basic periods of the (doubly periodic) elliptic function defined
as the inverse function(w), of

(46)

f) = / &
o (12 —a)(t2 - )
whererq is an arbitrary point inM. Choosingro = /&, we immediately see that
F(O1) + f(O2) = f(001) + f(002) =0 (47)

due to the sign difference of the square root in the integrand of equation (46) on the different
Riemann sheets.
The left-hand side of equation (43) can be evaluated by the residue theorem:

Vap

fe()dt = —2ria [ {f(0) — f(O)} + < ﬁ) {f(c01) — f(002)}]

= —2riaA [\/@Jr (“;’3)] (48)

oM

where

A= f(0) =—f(0p) = 3{f(0) — f(0)}. (49)
In the second equality of equation (48), we have used the following fact:

f(001) = f(002) = f(O1) — f(02) =24 (50)

which follows from applying Canchy’s theorem to the closed loop shown in figuag 7(
Figure 7p) displays the values of df over segments of the homotopy loggn terms of

the constantd defined in equation (49), obtained by application of the reflection principle
and the fact thatf has opposite signs on the two Riemann sheets compri¥ingThis
figure also shows that

Q, =2ilmA (51)
which implies that the basic periad, is purely imaginary.

At this point we have to distinguish between the two cases(i}- ab (figure 4p))
and (i) ¢® < ab (figure 4@)). In case (i) it is easily seen, by referring the contour of
integration in equation (46) (withh = /o and¢ = 0;) to figure 4p), that A = f(0,) is
purely imaginary. Thus equation (51) implies

Q, =24 (c? > ab). (52)
We then obtain, from equations (43) and (48), the following relationship bet\ﬁ:eﬂm) dr
andfn e(t) dt for the case? > ab:

/s(t)dt /e(t)dt +ima |:\/>+ ( —;ﬂ>:| (c? > ab) (53)
¢

1 See, for example, ch 1 of [17].
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(@

)

Figure 7. Integration paths and values of the integrals for the holomorphic differenfidefined
by equation (41)£2; is a basic period of the elliptic function defined by dequation (44)) and
A is defined by equation (49).

where

r=_1", (54)

We recall from equation (39) thzftﬂ e(t) dr is purely imaginary.
For case (ii):c? < ab, A is no longer purely imaginary. We have

24 = £(O) — f(Op) = f df (55)

C1+C2+C3

where the contour€’1, C,, C3 on the two cut Riemann sheets and their complex conjugate
counterparts on the lower half plane%, Cs, Cgs, are shown in figure 8. Defining

df = A’ (56)

C1

df =B (57)

Cy

the opposite signs of the two branches of the integrand and the reflection principle imply

df = A’ (58)
C3

df = —A" (59)
Cy

df = —-B* (60)
Cs

df = —A™. 61)
Ce

Figure 7p) and figure 8 then show that
Q, =i(2ImA’ +Im B) (c? < ab). (62)
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Now refer to the contouC on the first cut Riemann sheet in figurecg( Since df is
holomorphic,fc df = 0. It is easily seen from equation (41) that the integral along the
infinite quarter-circle vanishes, while the integral along the negative real axis eQu#s
(figure 7@)). These results, together with the facts that the integral along the positive
imaginary axis is purely imaginary and th@t is real, imply

ReB = Q,/2. (63)
Equation (55) thus yields

f(0) — f(0) =2A"4+ B=Q,+Q:/2 (64)
Analogous to equation (50) we have

f(001) — f(002) = f(01) — f(02) = 2y + 2, /2. (65)

Finally equations (43) and (48) lead to the following relationship betwgem) dr and
J, €(®) dr for the case? < ab:

/s(t)dtzifs(t)dt+i7ra <1+1> {\/aﬂ+ (a+ﬂ)} (c? < ab) (66)
¢ T/, 2t 2
wheret is defined by equation (54).
@ cZ<ab )
- CJD
- @@:D Vo -VB /G
YC3 A
02
Acg
- Vo ="}

Figure 8. (a) and p) represent contours of integration (in equations (55)—(61)) displayed on the
cut Riemann sheets of the holomorphic differentigl @quation (41)). €) represents a contour
on the first sheet to establish equation (63). The entire figure applies only to the?caseb.

The above analysis shows that the Abelian integrals in our central result of this section
(equation (37) for the transition amplitude) all depend on just one intg‘graflt) dr (recall
equation (39)) and the ratio of the two basic periodspf the elliptic function defined by
equation (46).
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6. Directions for further study

In this paper we hope to have conveyed some of the utility and elegance of the mathematics
of algebraic functions and Abelian integrals on compact Riemann surfaces as applied to
the semiclassical theory of molecular collisions. We illustrated the mathematical ideas and
techniques involved by two simple models, possibly the simplest ones for the genus zero and
genus one cases. The= 0 model leads to the tried-and true Landau—Zener formula. The
success of our approach in this simple but important case motivates the study of models with
more complicated topology and complex structures. Although it is not immediately clear
how ourg = 1 model relates to specific molecular systems, we hope it gives some flavour
of the problems one is likely to encounter in more realistic models of molecular collisions,
which will most likely involve g > 1 compact Riemann surfaces, or indeed non-compact
ones. In particular it is quite instructive to see how differences in the Hamiltonian matrices
for these models can lead to basic differences in the topological and analytic structures
of the Riemann surfaces governing quantum transitions. gThke 1l cases, however, will
require considerably more sophisticated mathematical tools as the uniformization of the
corresponding algebraic curves require more complicated meromorphic function fields than
the elliptic functions encountered in the last section.

There is a degree of magic to the Landau—Zener formula, which owes its power perhaps
to the very simplicity of the model on which it is based. The Hamiltonian for this model
(equation (18)) only describes the physical situation locally (near the transition region in
the nuclear coordinates). Yet as we have amply demonstrated in this paper, it is the very
global properties (topological and analytic) of the Riemann surface of the potential energy
function ¢(¢) that dictate the (physically) local quantum transitions. Indeed, the transition
amplitudes for transitions which occur physically neas O curiously depend solely on the
residues of(r) dr atr = oo. A similar state of affairs exists in the = 1 model. Now, in
a physical sense, what happens arourd co in a more realistic model (with very likely
large g) will differ markedly from the low genus models. The question thus arises: To
what extent can one approximak&(z) in equation (1) locally but make use of the global
properties of the approximated form to calculate transition probabilities? This intriguing
guestion definitely merits further investigation.

Another important problem that is not fully addressed in this paper is the proper choice of
meromorphic functions; (¢) representing classical trajectories for the nuclear coordinates.
These functions allow us to work with an algebraic curve (defined by equation (4)) relating
¢ to r rather than an algebraic variety (relatiagto R, ..., R,,)—a considerably more
complicated mathematical object. A reasonable procedure is to obtaiR;{hge from
integration of Hamilton’s equations using the single potential functig®4, ..., R,,) (the
branch of the potential functioa(Rs, ..., R,) defined from the above-mentioned variety)
corresponding to the initial electronic state. This approach, however, leaves open the
problem of the possibility of transitions from stateo statel(k # [) within some interval
of time. Another procedure is to incorporate local transitions within the framework of
Hamilton’s equations by complexifying: at some appropriate (real) time instant to bring
about instantaneous potential-energy surface ‘hops’. This procedure also suffers from serious
mathematical difficulties and physical ambiguities, such as the problem of the continuity
of the canonical momenta at the instant of transition and the choice of the exact instant of
transition. The most practical approach seems to be the search for empirical choices for
local nuclear trajectorie®; (z) (in the spirit of the Landau—Zener straight-line trajectories),
short of pursuing a rigorous classical mechanical analysis, which will lead to acceptable
approximations to particular systems.
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A final problem deserving a more complete treatment is the geometric phase factor
(equation (7)). These have not been calculated explicitly forgthe 1 model. A more
thorough investigation would involve studying the analytic propertiegp@f and ¢(r)
considered as analytic continuations¢gg{s) from the realr-axis and possibly looking into
the gauge theory aspects @f|$) considered as connections on vector bundles on Riemann
surfaces.
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