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Abstract. Some beautiful classical results in the mathematics of Abelian integrals, algebraic
functions and compact Riemann surfaces, which are relatively little used in physics applications
(except in string theory), are shown to be relevant in the semiclassical theory of non-adiabatic
collisions. These results are discussed in the context of the adiabatic theorem for the time-
dependent Schrödinger equation describing multi-(electronic) level molecular collision systems.
It is found that the different potential energy surfaces governing nuclear motion can be regarded
as a single algebraic functionε(t) of the complex time variablet . The topological and analytic
properties of the compact Riemannt-surface for this algebraic function then determine the
nature of the non-adiabatic quantum transitions. The amplitudes of these transitions are given
by a generalization of Dykhne’s formula, whose main feature is an Abelian (action) integral of
the Abelian differentialε(t) dt . These ideas are applied to a rederivation of the Landau–Zener
formula, which is shown to result from a model with a genus zero Riemann surface. A genus one
model, illustrating more substantially the interplay between topology, analyticity and quantum
transitions, is also discussed in detail.

1. Introduction

The semiclassical theory of collisional dynamics has a long and interesting history, reaching
back to the early days of quantum mechanics [1]. During its initial phase it was regarded
mainly as an approximation scheme to quantum mechanics, albeit a scheme with great
intuitive appeal (that of classical mechanics) and practical applicability. The situation
changed somewhat when it was realized, over two decades ago, that this theory can
be cast in the language of Feynman path integrals [2, 3], and that classical trajectories
can be continued analytically into either the complex time or coordinate domain to yield
quantum mechanical results [4]. From then on, semiclassical methodology acquired a more
independent status and was developed more as a theoretical framework in its own right,
while its applications in diverse fields of physics continued to grow [5]. More recently two
important developments in theoretical physics have brought semiclassical theories very much
to the fore. The first is the intense interest in the relationship between classical and quantum
chaos in various dynamical systems and, more generally, in a deeper understanding of the
relationship between classical and quantum mechanics [6]. The second is Berry’s discovery
[7, 8] of the universal presence of non-dynamical (geometrical) phases in the evolution of
systems separable into ‘fast’ and ‘slow’ degrees of freedom, traditionally the prime focus
of study by semiclassical techniques. These developments have not only yielded deep and
unifying ideas in physics [6, 8] but also revealed the great utility of a host of mathematical
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techniques. In particular topological and geometrical methods have assumed great relevance
in many problems of collisional dynamics [8, 9].

In this work we examine afresh the problem of non-perturbative solutions to the time-
dependent Schrödinger equation describing non-adiabatic transitions in a multi-level system.
We hope to demonstrate that certain well established, beautiful, but relatively little used,
results in classical function theory and algebraic geometry provide a remarkably natural and
appealing framework for the description of the physics of non-adiabatic transitions. In our
opinion, this framework also promises to yield calculational advantages as well as deeper
insights into the nature of semiclassical mechanics.

Our problem traces back to the well known Landau–Zener formula for non-adiabatic
transitions [10, 11]. Landau first exploited, within the framework of theJWKB approximation,
the technique of calculating the classical action to yield a quantum mechanical transition
amplitude by complexification of the nuclear coordinate variable. Dykhne [12] later
generalized this method to obtain a non-perturbative solution to the time-dependent
Schr̈odinger equation in the form of an energy contour integral over time treated as a
complex variable. Pechukas [2], Miller [3, 4] and Miller and George [4] then succeeded
in formulating semiclassical dynamics (classical mechanics plus quantum superposition)
in terms of Feynman path integrals and studied extensively the technique of time or
coordinate complexification. Hwang and Pechukas [13] also attempted to justify the Miller–
George theory by proving the existence of adiabatic contours in the complex time plane
corresponding to non-adiabatic transitions along the real time axis. The significance of the
Landau–Zener and Dykhne formulae and the Hwang–Pechukas adiabatic theorem beyond
their immediate applicability was recently underscored by Moodyet al [14] in the context
of geometric phases in the complex time plane.

Although this large body of work was aimed chiefly at producing concrete and
computationally useful results, it opens up many exciting avenues of exploration in the
underlying mathematics. We will focus on the following situation. LetHel(R; r) be
the electronic Hamiltonian in a molecular collision problem parametrized by the nuclear
coordinatesR1, . . . , Rm (R andr denote, collectively, the nuclear and electronic coordinates,
respectively). We assume that there exists a finiteN -dimensional subspace of the Hilbert
space of electronic states that is invariant with respect toHel(R; r). The adiabatic potential
energy surfaces for nuclear motion,εn(R), satisfying the Schr̈odinger equation

Hel(R; r)φn(R; r) = εn(R)φn(R; r)

can then be obtained by solving a polynomial equation (inε) of the form

εN + α1(R)εN−1 + · · · + αN(R) = 0

in which αi(R) are functions of the matrix elements ofHel in an arbitrary representation.
This polynomial equation defines a complex analytic varietyV in Cm+1. If we further
assume the existence of classical trajectories for nuclear motion, then each of the nuclear
coordinatesRi becomes a function of the time variablet . These functions, when analytically
continued, can be regarded as single-valued meromorphic functions of the complex-valued
time variable. The time variable serves to parametrize a curve inV defined by

εN + a1(t)ε
N−1 + · · · + aN(t) = 0

whereai(t) ≡ αi(R(t)). In the case of only one nuclear coordinate(m = 1) the nuclear
trajectoryR(t) and ε(t) (defined by the above equation) actually furnish a uniformization
of V. In the more general case(m > 1), we can still use the functionε(t) ≡ ε(αi(Rj (t)))

to impose a complex structure on the curve parametrized byt , and thus obtain the
corresponding Riemann surface ofε(t). The main question is then the following. When
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classical mechanics is analytically continued in the above sense, how do the topological
and complex structures of the resulting Riemann surface affect the dynamics of a system
described semiclassically by the Schrödinger equation? We will approach this problem
from the viewpoint of a physicist, and address this work mainly to physicists who, like
the author, may not be entirely at home with the theory of Riemann surfaces and algebraic
curves. Our discussion on the relevant mathematics will thus be quite elementary and largely
non-technical.

We begin by showing how the different branches of an algebraic function may
correspond precisely to the different potential energy curves in a multi-level problem. Next
we relate the analytic properties of this function to the genus of its Riemann surface by
the Riemann–Hurwitz formula [15] (section 2). A generalization of Dykhne’s formula is
then proposed with the help of the Hwang–Pechukas adiabatic theorem in the complex
plane (section 3). In section 4 we demonstrate the power and elegance of the Riemann
surface approach by providing yet another derivation of the Landau–Zener formula—an
entirely function theoretic one that highlights the crucial roles played by topology and
analyticity. We will see that the model on which this formula is based leads to a genus
zero Riemann surface—topologically a 2-sphere, with trivial fundamental group (all closed
loops deformable to a point). This topological feature is the deciding factor contributing to
the simplicity of the formula (equation (27)). Section 5 pursues a simple model leading to a
genus one Riemann surface—topologically a 2-torus. This slight complication in topology,
together with a corresponding complication in the analytic properties of the Abelian action
differential, lead to an interesting but much more complicated counterpart of the Landau–
Zener formula, involving the fundamental periods of elliptic functions. Our discussion of
the genus one model also makes contact with the Riemann–Roch theorem [16], a powerful,
classical theorem relating the analytic properties of meromorphic functions and Abelian
differentials on a Riemann surface to the topology of the surface. Finally, section 6 is
devoted to some speculations on the directions for further study.

2. Quantum transitions as manifestations of topology and analyticity

We assume that the time-dependent Schrödinger equation

H(t)9(t) = ih̄
∂9

∂t
(1)

describes the time evolution of non-degenerate electronic states in a molecular collision
system. The HamiltonianH(t) depends on time implicitly through a choice of nuclear
trajectoriesR(t). The instantaneous eigenfunctionsφ(t) of H(t) satisfying

H(t)φn(t) = εn(t)φn(t) (2)

are assumed to form a complete orthonormal set, whereεn(t), for real t , is the potential
energy curve governing nuclear motion on thenth electronic level in the adiabatic (diagonal)
representation. Non-degeneracy means thatεi(t) 6= εj (t) for all real t , and i 6= j . For
molecular collision problems, one usually works with a finite-dimensional subspace of the
Hilbert space generated by{φn} that is invariant underH . For anN -level problem, and
in an arbitrary representation{θn(t)}, theN × N hermitian matrix representingH(t) is not
necessarily diagonal, and theεn(t) are obtained from diagonalization, i.e. solutions of the
characteristic equation

det|Hij (t) − ε| = 0 (3)
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where

Hij (t) ≡ 〈θi |H |θj 〉.
Equation (3) is in general a polynomial equation of the form

εN + a1(t)ε
N−1 + · · · + aN(t) = 0 (4)

where the coefficientsai(t) are functions ofHij (t). This equation defines an affine analytic
curve inC2.

For fixed realt , non-degeneracy and the fundamental theorem of algebra imply that
there areN distinct real roots—the eigenvaluesεi(t), i = 1, 2, . . . , N . However, and this
is the crucial point, there always exist complex values oft for which equation (4) has
repeated roots. These complext values are the branch points of the multivalued function
ε(t) determined by equation (4).ε(t) can be made single valued by considering its domain
as anN -sheeted Riemann surfaceM (instead of the complex planeC) whose sheets are
joined together at the branch points and along cuts. The details of how these cuts are made
do not affect the topology of the surface. What is important for our physical application
is that the topology dictates the possible non-homotopic smooth paths onM (those not
continuously deformable into each other) along whichε(t) varies from eigenvalue ofH
to another. Distinct, non-intersecting, potential energy curvesεi(t) considered asN real
functions of realt , in fact, when analytically continued, constitute a single potential energy
meromorphic functionε(t) : M → CU{∞}, whereM is a Riemann surface, i.e. a one-
dimensional connected complex manifold.

Thus the dynamics of a multi-level system can conveniently be viewed as dynamics
on a Riemann surface whose topological and complex structures determine the nature of
quantum transitions. We will see (in the examples discussed in sections 4 and 5) that such
topological properties as the genus, the fundamental group51(M) and the first homology
group H1(M), as well as such analytical properties as the degree ofε(t) (the number of
branches), and the singularities and residues of the Abelian differentialε(t) dt , all play very
important roles.

It is a remarkable theorem [17] in classical function theory that if the coefficientsai(t)

in equation (4) are rational functions oft , then the Riemann surface ofε(t) is compact
(homeomorphic to a sphere withg handles,g = 0, 1, 2, . . . being the genus of the surface).
Under the conditions of this theorem, equation (4) defines an algebraic curve [16] and the
meromorphic functionε(t) is an example of an algebraic function [17]. The converse of
this theorem is also true: any compact Riemann surface is conformally equivalent to the
Riemann surface of some algebraic function. The simple topology of compact Riemann
surfaces allows a relatively straightforward identification of the paths leading to quantum
transitions based on51(M) = Z2g for a surface of genusg, as well as relatively simple
calculations of the corresponding action integrals based onH1(M). This will be discussed
further in the next section and demonstrated in some detail for the genus one example in
section 5.

The genusg of the Riemann surface of the algebraic functionε(t) can be easily
determined by another remarkable theorem for compact Riemann surfaces—the Riemann–
Hurwitz formula [17]—which relatesg to the number of branch points(B), and the degree
(N), of ε(t). Specifically

g = B/2 − N + 1. (5)

This formula immediately implies that the number of branch points must be even. Its simple
and straightforward utility will again be illustrated in the examples in sections 4 and 5.
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Of course there is noa priori reason why the coefficientsai(t) in equation (4) should
be rational functions oft and, in fact, in many semiclassical model studies [1], they are not.
Rational functions, however, can in practice be used to approximate any smooth function
locally to any desired degree of accuracy. As will be seen below, the Landau–Zener model
is based on approximating potential curves locally (near the crossing point) by the simplest
possible non-trivial rational functions oft (linear functions). The success and importance
of this model has motivated us to exploit the convenient properties of compact Riemann
surfaces in our investigation. Thus, in this work, we will confine our attention to models
of the HamiltonianH(t) leading to such surfaces.

3. The adiabatic theorem and Abelian integrals in the transition amplitude

The adiabatic theorem on the real time(t) axis states that for a non-degenerate, slowly
varying, time-dependent HamiltonianH(t) the solution9(t) of the Schr̈odinger equation (1)
with 9(0) = φn(0) (cf equation (2)) is

9(t) = φn(t) exp

{
iγn(t) − i

h̄

∫ t

0
εn(t) dt

}
(6)

in the semiclassical limit ¯h → 0. The quantity

γn(t) ≡ i
∫ t

0
〈φn|φ̇n〉 dt (7)

is the so-called geometric (Berry) phase, which can be shown quite generally to be real
provided{φn(t)} is an orthonormal set for allt .

The condition of adiabaticity (slow time variation ofH(t)) amounts to the limitT → ∞,
whereT is the time interval over whichH(t) changes significantly. As pointed out by
Hwang and Pechukas [13], there is a close connection between the adiabatic limit and the
classical limith̄ → 0. The correspondence between these two limits is usually achieved by
the time-scalingτ = t/T , which leads to the time-scaled Schrödinger equation

ih̄′ ∂9 ′

∂τ
= H ′(τ )9 ′(τ )

whereh̄′ ≡ h̄/T , H ′(τ ) ≡ H(T τ), and9 ′(τ ) ≡ 9(T τ). However, Berry [18] also pointed
out that the two limits are not in general equivalent, sinceH ′(τ ) in the above equation
may have a concealed ¯h-dependence. Thus the classical limit ¯h → 0 (on both sides of the
Schr̈odinger equation) andT = constant may not be equivalent to the limitT → ∞ while
keepingh̄ constant.

To restore the equivalence, we make a distinction between the classical limit (¯h → 0
on both sides of the Schrödinger equation (1)) and the semiclassical limit (¯h → 0 on only
the right-hand side of equation (1)). This distinction is justified in the present context since
H(t) is presumably determined from a quantum mechanical treatment of the electronic
motion, where ¯h 6= 0 strictly. In the semiclassical limit the parametersa, b, c in our
model Hamiltonians (equations (18) and (28)) are strictly constants (even though they
may involve h̄ in principle), and are not affected by the limit ¯h → 0. The equivalence
between the adiabatic and the semiclassical limits is borne out by the Landau–Zener formula
(equation (27)), in whicha ∝ 1/T andb = constant.

Hwang and Pechukas [13] also generalized the adiabatic theorem from the real axis to
the complex planeC to incorporate quantum transitions from statei to statej . This result
can be restated in terms of thet-Riemann surface: if the energy functionε(t) is viewed
as a function on the Riemann surfaceM, ε(t) : M → C ∪ {∞}, specified by equation (4),
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Figure 1. A contourCµ from the pointt = 0 on the real axis of theith Riemann sheet (0i ) to
the pointt = 0 on the real axis of thej th Riemann sheet (0j ) along which the adiabatic theorem
holds. The contour leads to a quantum transition from statei to statej . In the general case
sheetsi andj may not be connected directly.

then there exists a contourC on M leading from theith sheet to thej th sheet such that
equation (6) holds alongC in the semiclassical limit ¯h → 0. Figure 1 illustrates one such
contour Cµ. (µ is a homology index, as explained below.) The adiabatic theorem thus
implies that, alongC, the solution to the Schrödinger equation (1) describing a system
initially in state i is given by

9C(t) = φC(t) exp

{
iγC(t) − i

h̄

∫ t

0i (C)

ε(t) dt

}
(8)

whereφC(t) is the analytic continuation ofφi(t) from the real time axis (on theith sheet of
M) to other regions ofM alongC. The geometric phaseγC(t) in equation (8) is given by

γC(t) = i
∫ t

0i (C)

dt〈φC(t)|φ̇C(t)〉. (9)

Now the general solution of the Schrödinger equation (1) on the real time axis is

9(t) =
N∑

l=1

Cl(t)φl(t) exp

{
− i

h̄

∫ t

0
εl(t) dt

}
. (10)

Equation (8) thus satisfies the boundary conditions

9C(−∞i ) = Ci(−∞)φi(−∞) exp

{
− i

h̄

∫ −∞

0
εi(t) dt

}
(11)

and

9C(∞j ) = Cj(∞)φj (∞) exp

{
− i

h̄

∫ ∞

0
εj (t) dt

}
(12)

where in the above two equations all time values are real and

|Ci(−∞)|2 = 1. (13)

The boundary condition equation (11) is equivalent to the following boundary condition on
the geometric phase:

exp(iγC(−∞i )) = Ci(−∞) = eiθ (θ real). (14)
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Comparing equation (8) with equation (12), we have

exp{iγC(∞j )} exp

{
− i

h̄

∫ ∞j

0i (C)

ε(t) dt

}
= Cj(∞j ) exp

{
− i

h̄

∫ ∞j

0j

ε(t) dt

}
. (15)

Thus for a pathC from 0i to 0j on which the adiabatic theorem holds, the transition amplitude
from statei to statej is given by

Cj(∞j ) = exp{iγC(∞j )} exp

{
− i

h̄

∫
C
ε(t) dt

}
. (16)

The adiabatic theorem also necessarily implies that the pathC(0i → 0j ) is one where the
Abelian integral∫

C
ε(t) dt

has a negative imaginary part, to insure that as ¯h → 0 the transition probability does not
increase exponentially. This requirement applies only to the entire path and not necessarily
to a localized segment. Indeed, any validC can be written as

C = C + 1C − 1C
where 1C is a localized segment on which the above Abelian integral has a positive
imaginary part.

In general there may be several non-homotopic pathsCλ in M from 0i to 0j satisfying
the adiabatic theorem, whereλ is a homotopy index. Considerλ1 6= λ2 such thatCλ1 and
Cλ2 correspond to the same path (Cλ1 andCλ2 may consist of non-commuting loops traversed
in different orders). One still has∫

Cλ1

ε(t) dt =
∫

Cλ2

ε(t) dt

or ∫
Cλ1C−1

λ2

ε(t) dt = 0.

Now f (Cλ) = ∫
Cλ

ε(t) dt considered as a mapf :51(M) → C is a group homomorphism
provided two pathsCλk1 andCλk2(k1 6= k2) within the same homotopy class do not enclose
singularities with non-zero residues of the Abelian differentialε(t) dt . In this case, the
fact thatC is Abelian implies thatf is more appropriately considered as an injective map
from H1(M) to C, since, by a well known theorem,H1(M), the first homology group of
M, is the Abelianization of51(M), i.e. H1(M) = 51(M)/[51, 51], where [51, 51] is
the commutator subgroup of51(M). Thus we need to label the paths leading to distinct
values of the Abelian integral

∫
ε(t) dt by Cµ, whereµ is a homology index, rather than a

homotopy index.
Finally, to take into account the possible existence of singularities ofε(t) dt with non-

zero residues, we recognize that, within each homology classµ, there may be distinct paths
Cµk1 andCµk2(k1 6= k2) such that∫

Cµk1

ε(t) dt 6=
∫

Cµk2

ε(t) dt

if the loopCµk1C−1
µk2

encloses such singularities. The total transition amplitude is thus given
by

Cj(∞j ) =
∑

µ

exp{iγCµ
(∞j )}

∑
k

exp

{
− i

h̄

∫
Cµk

ε(t) dt

}
(17)
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where the sum overµ is over the homology classes and that overk is over the paths in each
homology class leading to distinct values, with negative imaginary parts, for the Abelian
integral

∫
ε(t) dt . We see that sinceγCµ

(∞j ) is real for allµ, the geometric phase factor

exp{iγCµ
(∞j )}

gives aU(1) representation ofH1(M). Equation (17) displays clearly the importance of the
topology ofM and the analytic properties of the Abelian integral

∫
ε(t) dt in the calculation

of semiclassical transition amplitudes [19]. This equation for the transition amplitude is the
generalization of Dykhne’s formula that we seek. It will be the basis for our calculations
in the next two sections. We note in advance that these calculations are based on examples
with g 6 1. The corresponding51(M)’s are Abelian and thus51(M) = H1(M) for these
cases.

4. The Landau–Zener formula revisited: dynamics on a genus zero Riemann surface

The simplest model describing non-adiabatic transitions is the Landau–Zener model for a
two-state problem. In this model the electronic HamiltonianH(t) is given by

H(t) =
(

at b

b −at

)
(18)

wherea andb are positive real constants. Physically the diagonal elements represent two
intersecting potential curves. Thus the quantitya can be interpreted as the product of some
instantaneous velocity of nuclear motion and the slope of one of the curves at the crossing
point, while b is the non-adiabatic coupling. The solutions of equation (3) or (4) for the
adiabatic potential energy surfaces are immediately given by

ε(t) = ∓a

√(
t + i

b

a

) (
t − i

b

a

)
. (19)

The algebraic functionε(t) thus has two branch points (att = ±ib/a) and two branches.
SettingB = 2 andN = 2 in equation (5) (the Riemann–Hurwitz formula), the Riemann
surfaceM of ε(t) is seen to be of genus zero (g = 0), or topologically a 2-sphere. This
fact can also be seen very simply by the topological illustrations of figure 2, which shows
one way of constructingM from two distinct (cut) sheets ofC. (Other ways result from
alternate ways of cutting thet-plane beginning and ending at the branch points±ib/a. All
lead to a 2-sphere forM.)

The Abelian differential ε(t) dt , with ε(t) given by equation (19), clearly has
singularities only at the two distinct points at infinity:t = ∞1, ∞2 (see figure 2). The
subscripts 1 and 2 refer to the Riemann sheets corresponding to the− and+ branches in
equation (19), respectively. To determine the nature of these singularities, we letz = 1/t

and expand aroundz = 0. Thus, lettingtB = ib/a, we have

ε(t)dt = ∓ a

z3
(1 + tBz)1/2(1 − tBz)1/2 dz

= ±
(

a

z3
− at2

B

2

1

z
+ · · ·

)
dz. (20)

Hence∞1,2 are third-order poles ofε(t) dt with non-zero residues given by

Res(∞ 1
2
) = ∓at2

B

2
= ± b2

2a
. (21)
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Figure 2. The construction of the Riemann surfaceM (a 2-sphere) ofε(t) (equation (19)) for
the Landau–Zener model. One proceeds from (a) distinct sheets of cutC planes (1 and 2)
with the branch points and cuts as shown (tB = ib/a), through 1-point compactifications to
(b) the corresponding Riemann spheres with cuts, through homeomorphic deformations of the
cut-spheres to (c) the corresponding hemispheres, and finally, by joining the hemispheres with
matching boundaries, to (d) the 2-sphere. In (a) sheets 1, 2 correspond to the− and+ signs
in equation (19), respectively.

We note that equation (21) confirms the residue theorem: the sum of the residues of an
Abelian differential on a compact Riemann surface is always zero [15].

The fundamental group51(M) for a 2-sphere [= H1(M)] is trivial (consisting only
of the identity element). Hence in equation (17) for the transition amplitude there is no
summation overµ (the homotopy classes ofM) and the geometric phase factor exp{iγCµ

(∞)}
(being aU(1) representation of51(M)) can be set equal to unity. For the transition 1→ 2,
equation (17) then reads

C2(∞2) =
∑

k

exp

{
− i

h̄

∫
Ck

ε(t) dt

}
(22)

whereCk is a path onM from 01 to 02 (cf figures 1 and 2), and the sum overk is over
paths leading to distinct values (with negative imaginary parts) for the Abelian integral∫

ε(t) dt . (Distinct values arise because of the presence of singularities ofε(t) dt with
non-zero residues.)
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Figure 3. Direct paths leading to distinct values for the Abelian integral in equation (22) for the
Landau–Zener model, whose Riemann surface is a sphere: (a) shows the paths on the sphere;
(b) shows these paths on the corresponding Riemann sheets, deformed to run entirely along the
imaginary axes.

There are two direct paths onM, designated 1 and 2 in figure 3(a), that give rise to
distinct values of

∫
ε(t) dt . These can also be represented on the Riemann sheets ofε(t)

(cut planes) as in figure 3(b), in which the contours run entirely along the imaginary axes
of the sheets. Since both branches ofε(t) are real on the real axis (cf equation (19)), the
reflection principle onC implies∫

©1
ε(t) dt =

( ∫
©2

ε(t) dt

)∗
. (23)

Furthermore, we can also conclude from equation (19) that both
∫
©1 ε(t) dt and

∫
©2 ε(t) dt

are purely imaginary. Thus on setting
∫
©1 ε(t) dt = iI , I real, the residue theorem implies

that (figure 3(a))∫
©2

ε(t) dt −
∫
©1

ε(t) dt = −2iI = 2π i Res(∞1) = (2π i)

(
b2

2a

)
. (24)

According to equation (22), we have to sum over all pathsCk such that each
∫
Ck

ε(t) dt has
a negative imaginary part. Figure 3(a) and the value of Res(∞1) given by equation (21)
show that, for a positive integerk, Ck is of the form

Ck = ©1 + k clockwise loops around∞1. (25)

(The anticlockwise loops yield positive imaginary parts for the integral.)
The transition amplitude can finally be written as

C2(∞) = exp

(
−πb2

2ah̄

) ∞∑
k=0

exp

(
−πkb2

ah̄

)
= exp(−πb2/2ah̄)

1 − exp(−πb2/ah̄)
. (26)
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The leading term of the transition probability is thus

P1→2 ' exp

(
−πb2

ah̄

)
(27)

which is the Landau–Zener formula.
We note thatC2(∞) in equation (26) can only be interpreted as a transition amplitude

if it is less than one, which is the case only whenπb2/2ah̄ is larger than∼ 0.5 ash̄ → 0.
The Landau–Zener formula (equation (27)), however, suffers from no such limitation.

5. Dynamics on a genus one Riemann surface

We now consider the following Hamiltonian

H(t) =
(

at c

c b/t

)
(28)

wherea, b, c are positive real constants andc2 6= ab. The solutions of equation (4) for the
adiabatic potential energy surfaces are given by

ε(t) =
(

1

2
at + b

t

)
∓ a

2t

√
(t + √

α)(t − √
α)(t +

√
β)(t −

√
β) (29)

where

α

β
=

(
ab − 2c2

a2

)
± 2c

a2

√
c2 − ab. (30)

The algebraic functionε(t) of equation (29) has two branches, and four branch points:
±√

α and±√
β. The Riemann–Hurwitz formula then implies thatg = 1 (on settingB = 4

andN = 2 in equation (5)) and thus the Riemann surfaceM of ε(t) is topologically a torus.
As in the previous section we use the branch indices 1 and 2 to designate the branches of
ε(t) corresponding to the− and+ signs of equation (29), respectively.

The Abelian differentialε(t) dt is seen to have poles at 02 and ∞1,2, and zeros at 01
and the branch points±√

α and±√
β. To find the orders of these zeros and poles and the

associated residues we Laurent expandε(t) dt aroundt = 0:

ε(t) dt =
[

1

2t
(b ∓ a

√
αβ) + at

2

{
1 ±

√
αβ

2

(
1

α
+ 1

β

)}
+ O(t3)

]
dt (31)

and aroundt = ∞ (equivalently aroundz = 0, for z = 1/t):

ε(t) dt =
[
−a

2
(1 ∓ 1)

1

z3
+

{
−b

2
∓ a(α + β)

4

}
1

z
∓ a

16
(α − β)2z + O(z3)

]
dz (32)

where in both equations (31) and (32) the lower (upper) sign corresponds to branch 1 (2).
From the above equations we see that 01 is not a pole but a simple zero, since equation (30)
implies b = a

√
αβ, whereas 02 and∞1 are both simple poles with residues given by

Res(02) = 1

2

(
b + a

√
αβ

)
= b (33)

Res(∞1) = −b

2
− a

√
α + β

4
(34)

while ∞2 is a third-order pole with residue given by

Res(∞2) = −b

2
+ a

√
α + β

4
. (35)
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Figure 4. The construction of the Riemann surfaceM of ε(t) (equation (29)) from cutt-planes
for (a) c2 < ab and (b) c2 > ab. Both cases lead to a torus topologically.

We again note that the sum of the residues vanishes, in agreement with the residue theorem
on compact Riemann surfaces. The branch points±√

α and±√
β are all simple zeros of

ε(t) dt . This is due to the fact that, besides 01, ε(t) does not have any zeros, while dt , as
a meromorphic differential onM, has simple zeros at±√

α and±√
β.

We also note thatε(t) dt satisfies the Poincare–Hopf index formula for meromorphic
differentials on a compact Riemann surface, which states that the number of zeros (counting
multiplicities) minus the number of poles (counting multiplicities) of any meromorphic
differential on a compact Riemann surface of genusg is equal to 2g−2. In the present case
g = 1, so the number of zeros ofε(t) dt must be equal to the number of poles ofε(t) dt ,
being five in each case, counting multiplicities.

Figure 4 illustrates the construction of the Riemann surfaceM for ε(t) from the
compactified cut Riemann sheets. The location of the branch points±√

α and±√
β with

respect to the real and imaginaryt-axes depends on the sign of the quantityc2 − ab, which
by assumption is non-zero (cf equation (30)). A torus results for both cases.

The topology of the Riemann surfaceM is closely related to the analytic properties of
meromorphic functions and Abelian differentials that can exist onM. The relationship is
embodied in the Riemann–Roch theorem, which, when applied to the Abelian differential
ω = ε(t) dt (with ε(t) specified by equation (29)), implies thatω belongs to a five-
dimensional linear vector space of Abelian differentials onM with poles of orders not
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Figure 4. (Continued)

greater than those ofω at the same points†.
Since51(M) = H1(M) = Z2 for a torus, the homology (homotopy) class indexµ in

equation (17) labels two integersn ∈ Z andm ∈ Z. We will pick specific oriented closed
curvesζ andη belonging to the classes(1, 0) and (0, 1) which do not traverse any of the
singularities ofε(t) dt , as in figure 5. Then an arbitrary curveCµ from τ1 to τ2 (whereτ1

is some realt-value on the first sheet ofε(t) and τ2 the corresponding real value on the
second sheet) is homotopic toI0 + (n loops ofζ ) + (m loops ofη), whereI0 is a direct
path fromτ1 to τ2 not traversing any singularities ofε(t) dt . We write

Cµ ∼ I0ζ
nηm. (36)

Note thatτ1 6= 0 andτ2 6= 0 are chosen as the end points ofCµ due to the fact that 02 is a
pole of ω. This choice has no effect on the transition amplitude given by equation (17).

† This result is obtained by considering the divisor

D = −02 − ∞1 − 3∞2

in the Riemann–Roch theorem, where 02, ∞1, and ∞2 are poles of orders 1, 1, and 3, respectively, of the
Abelian differentialε(t) dt (εd(t) given by equation (29)). The Riemann–Roch theorem, a deep result relating the
topological and analytical properties of compact Riemann surfaces, is discussed in any standard work on Riemann
surfaces, algebraic curves, and algebraic geometry, such as [15, 16, 19].
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Figure 5. Non-trivial oriented homotopy pathsζ and η on the Riemann surface ofε(t)
(equation (29)). A general path fromτ1 to τ2 leading to quantum transition is homotopic
to I0ζ

nηm, wheren, m ∈ Z.

Based on a general theorem of Abelian integrals on a Riemann surface, the transition
amplitudeC2(∞) given by equation (17) can then be written in the form [20]

C2(∞) =
∑′

n,m,
k1,k2,k3

exp{i(nγζ + mγη)} exp

[
− i

h̄

{ ∫
I0

ε(t) dt + n

∫
ζ

ε(t) dt

+m

∫
η

ε(t) dt + 2π i(k1 Res(02) + k2 Res(∞1) + k3 Res(∞2))

}]
. (37)

In this equationn, m, k1, k2, k3 all ∈ Z, the three residues are given by equations (33)–(35),
γζ andγη are the geometric phases corresponding to the closed loopsζ andη, respectively
(cf equations (9) and (17)) and the prime above the summation sign denotes a restricted
sum: only those values ofn, m, k1, k2, k3 are allowed such that the quantity within the
brackets{ } has a negative imaginary part. We note thatζ andη are specific closed loops
on M, not homotopy classes.

For the remainder of this section we will study the relationships between the three
integrals occurring in equation (37).

First we display in figure 6 a possible choice for the pathI0 on the cut Riemann spheres
corresponding to the two sheets ofε(t) for both the casesc2 < ab andc2 > ab (cf figure 4).
In each caseI ′

0 represents the complex-conjugated path ofI0. It is clear we can choose the
loop η (of figure 5) such that it is the combination ofI0 and−I ′

0. Also, sinceε(t) is real
on the real axis, the reflection principle implies that∫

I0

ε(t) dt =
( ∫

I ′
0

ε(t) dt

)∗
. (38)

Thus ∫
η

ε(t) dt =
∫

I0

ε(t) dt −
∫

I ′
0

ε(t) dt = 2i Im
∫

I0

ε(t) dt. (39)

To relate
∫
ζ
ε(t) dt to

∫
η
ε(t) dt we use the following Riemann bilinear relation on two

closed differentialsθ and θ̃ on a compact Riemann surfaceM of genusg†:∫
∂M

f θ̃ =
g∑

l=1

[ ∫
ζl

θ

∫
ηl

θ̃ −
∫

ηl

θ

∫
ζl

θ̃

]
(40)

where θ = df , ∂M is the boundary of a 4g-sided polygon representing the canonically
dissected Riemann surface with oriented sidesζl , ηl , ζ−1

l , η−1
l which generate51(M). For

† See, for example, section III.3 of [15].
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Figure 6. A choice of the pathI0 in equation (37) and figure 5 for the two cases (a) c2 < ab

and (b) c2 > ab, displayed on cut Riemann spheres; (c) represents both cases (a) and (b) on
the Riemann surfaceM (a torus).t andt∗ (complex conjugate oft) represent distinct points on
the cut-edges and thus distinct points onM. I ′

0 is the complex conjugate ofI0.

the present caseg = 1, so this polygon is simply a rectangle with opposite sides identified.
We chooseθ to be the holomorphic differential

θ = df ≡ dt√(
t − √

α
) (

t + √
α
) (

t − √
β
) (

t + √
β
) (41)

whereα andβ are given by equation (30) and̃θ to be the Abelian action differential

θ̃ ≡ ε(t) dt. (42)

Then ∫
∂M

f (t)ε(t) dt = �ζ

∫
η

ε(t) dt − �η

∫
ζ

ε(t) dt (43)
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where

�ζ ≡
∫

ζ

dt√(
t − √

α
) (

t + √
α
) (

t − √
β
) (

t + √
β
) (44)

and

�η ≡
∫

η

dt√(
t − √

α
) (

t + √
α
) (

t − √
β
) (

t + √
β
) (45)

are recognized to be the two basic periods of the (doubly periodic) elliptic function defined
as the inverse function,t (w), of

f (t) =
∫ t

t0

dt√
(t2 − α)(t2 − β)

(46)

wheret0 is an arbitrary point inM†. Choosingt0 = √
α, we immediately see that

f (01) + f (02) = f (∞1) + f (∞2) = 0 (47)

due to the sign difference of the square root in the integrand of equation (46) on the different
Riemann sheets.

The left-hand side of equation (43) can be evaluated by the residue theorem:∫
∂M

f (t)ε(t) dt = −2π ia

[√
αβ

2
{f (01) − f (02)} +

(
α + β

4

)
{f (∞1) − f (∞2)}

]
= − 2π iaA

[√
αβ +

(
α + β

2

)]
(48)

where

A ≡ f (01) = −f (02) = 1
2{f (01) − f (02)}. (49)

In the second equality of equation (48), we have used the following fact:

f (∞1) − f (∞2) = f (01) − f (02) = 2A (50)

which follows from applying Canchy’s theorem to the closed loop shown in figure 7(a).
Figure 7(b) displays the values of

∫
df over segments of the homotopy loopη in terms of

the constantA defined in equation (49), obtained by application of the reflection principle
and the fact thatf has opposite signs on the two Riemann sheets comprisingM. This
figure also shows that

�η = 2i Im A (51)

which implies that the basic period�η is purely imaginary.
At this point we have to distinguish between the two cases (i)c2 > ab (figure 4(b))

and (ii) c2 < ab (figure 4(a)). In case (i) it is easily seen, by referring the contour of
integration in equation (46) (witht0 = √

α and t = 01) to figure 4(b), that A = f (01) is
purely imaginary. Thus equation (51) implies

�η = 2A (c2 > ab). (52)

We then obtain, from equations (43) and (48), the following relationship between
∫
ζ
ε(t) dt

and
∫
η
ε(t) dt for the casec2 > ab:∫

ζ

ε(t) dt = 1

τ

∫
η

ε(t) dt + iπa

[√
αβ +

(
α + β

2

)]
(c2 > ab) (53)

† See, for example, ch 1 of [17].



Semiclassical theory of non-adiabatic collisions 1071

Figure 7. Integration paths and values of the integrals for the holomorphic differential df defined
by equation (41).�ζ is a basic period of the elliptic function defined by df (equation (44)) and
A is defined by equation (49).

where

τ ≡ �η

�ζ

. (54)

We recall from equation (39) that
∫
η
ε(t) dt is purely imaginary.

For case (ii):c2 < ab, A is no longer purely imaginary. We have

2A = f (01) − f (02) =
∫

C1+C2+C3

df (55)

where the contoursC1, C2, C3 on the two cut Riemann sheets and their complex conjugate
counterparts on the lower half planes,C4, C5, C6, are shown in figure 8. Defining∫

C1

df ≡ A′ (56)∫
C2

df ≡ B (57)

the opposite signs of the two branches of the integrand and the reflection principle imply∫
C3

df = A′ (58)∫
C4

df = −A′∗ (59)∫
C5

df = −B∗ (60)∫
C6

df = −A′∗. (61)

Figure 7(b) and figure 8 then show that

�η = i(2 ImA′ + Im B) (c2 < ab). (62)
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Now refer to the contourC on the first cut Riemann sheet in figure 8(c). Since df is
holomorphic,

∫
c

df = 0. It is easily seen from equation (41) that the integral along the
infinite quarter-circle vanishes, while the integral along the negative real axis equals�ζ/2
(figure 7(a)). These results, together with the facts that the integral along the positive
imaginary axis is purely imaginary and that�ζ is real, imply

ReB = �ζ/2. (63)

Equation (55) thus yields

f (01) − f (02) = 2A′ + B = �η + �ζ/2. (64)

Analogous to equation (50) we have

f (∞1) − f (∞2) = f (01) − f (02) = �η + �ζ/2. (65)

Finally equations (43) and (48) lead to the following relationship between
∫
ζ
ε(t) dt and∫

η
ε(t) dt for the casec2 < ab:∫

ζ

ε(t) dt = 1

τ

∫
η

ε(t) dt + iπa

(
1 + 1

2τ

) {√
αβ + (α + β)

2

}
(c2 < ab) (66)

whereτ is defined by equation (54).

Figure 8. (a) and (b) represent contours of integration (in equations (55)–(61)) displayed on the
cut Riemann sheets of the holomorphic differential df (equation (41)). (c) represents a contour
on the first sheet to establish equation (63). The entire figure applies only to the casec2 < ab.

The above analysis shows that the Abelian integrals in our central result of this section
(equation (37) for the transition amplitude) all depend on just one integral

∫
I0

ε(t) dt (recall
equation (39)) and the ratio of the two basic periods,τ , of the elliptic function defined by
equation (46).
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6. Directions for further study

In this paper we hope to have conveyed some of the utility and elegance of the mathematics
of algebraic functions and Abelian integrals on compact Riemann surfaces as applied to
the semiclassical theory of molecular collisions. We illustrated the mathematical ideas and
techniques involved by two simple models, possibly the simplest ones for the genus zero and
genus one cases. Theg = 0 model leads to the tried-and true Landau–Zener formula. The
success of our approach in this simple but important case motivates the study of models with
more complicated topology and complex structures. Although it is not immediately clear
how ourg = 1 model relates to specific molecular systems, we hope it gives some flavour
of the problems one is likely to encounter in more realistic models of molecular collisions,
which will most likely involve g > 1 compact Riemann surfaces, or indeed non-compact
ones. In particular it is quite instructive to see how differences in the Hamiltonian matrices
for these models can lead to basic differences in the topological and analytic structures
of the Riemann surfaces governing quantum transitions. Theg > 1 cases, however, will
require considerably more sophisticated mathematical tools as the uniformization of the
corresponding algebraic curves require more complicated meromorphic function fields than
the elliptic functions encountered in the last section.

There is a degree of magic to the Landau–Zener formula, which owes its power perhaps
to the very simplicity of the model on which it is based. The Hamiltonian for this model
(equation (18)) only describes the physical situation locally (near the transition region in
the nuclear coordinates). Yet as we have amply demonstrated in this paper, it is the very
global properties (topological and analytic) of the Riemann surface of the potential energy
function ε(t) that dictate the (physically) local quantum transitions. Indeed, the transition
amplitudes for transitions which occur physically neart = 0 curiously depend solely on the
residues ofε(t) dt at t = ∞. A similar state of affairs exists in theg = 1 model. Now, in
a physical sense, what happens aroundt = ∞ in a more realistic model (with very likely
large g) will differ markedly from the low genus models. The question thus arises: To
what extent can one approximateH(t) in equation (1) locally but make use of the global
properties of the approximated form to calculate transition probabilities? This intriguing
question definitely merits further investigation.

Another important problem that is not fully addressed in this paper is the proper choice of
meromorphic functionsRi(t) representing classical trajectories for the nuclear coordinates.
These functions allow us to work with an algebraic curve (defined by equation (4)) relating
ε to t rather than an algebraic variety (relatingε to R1, . . . , Rm)—a considerably more
complicated mathematical object. A reasonable procedure is to obtain theRi(t) from
integration of Hamilton’s equations using the single potential functionεk(R1, . . . , Rm) (the
branch of the potential functionε(R1, . . . , Rm) defined from the above-mentioned variety)
corresponding to the initial electronic state. This approach, however, leaves open the
problem of the possibility of transitions from statek to statel(k 6= l) within some interval
of time. Another procedure is to incorporate local transitions within the framework of
Hamilton’s equations by complexifyingdt at some appropriate (real) time instant to bring
about instantaneous potential-energy surface ‘hops’. This procedure also suffers from serious
mathematical difficulties and physical ambiguities, such as the problem of the continuity
of the canonical momenta at the instant of transition and the choice of the exact instant of
transition. The most practical approach seems to be the search for empirical choices for
local nuclear trajectoriesRi(t) (in the spirit of the Landau–Zener straight-line trajectories),
short of pursuing a rigorous classical mechanical analysis, which will lead to acceptable
approximations to particular systems.
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A final problem deserving a more complete treatment is the geometric phase factor
(equation (7)). These have not been calculated explicitly for theg = 1 model. A more
thorough investigation would involve studying the analytic properties ofφ(t) and φ̇(t)

considered as analytic continuations ofφi(t) from the realt-axis and possibly looking into
the gauge theory aspects of〈φ|φ̇〉 considered as connections on vector bundles on Riemann
surfaces.
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